home‎ > ‎8th Grade‎ > ‎1. Geology‎ > ‎Geo3‎ > ‎

G 9 - Volcanoes

I can describe how energy from volcanoes can cause changes in the earth’s surface


When most people think of volcanoes, they think of a tall mountain with a crater on the top, maybe a little snow at the summit and some trees scattered around the base. There are many volcanoes like this, but volcanoes exist in many other forms as well. Each type of volcano has characteristic features that distinguish it from other types. Volcanoes differ in appearance because of the composition of their magma and the processes that originally created them.

Types of Volcanoes:

Shield Volcanoes

Shield volcanoes get their name from their shape. Although shield volcanoes are not steep, they may be very large. Shield volcanoes are common at spreading centers or intraplate hot spots (Figure below).

Mauna Loa Volcano in Hawaii is the largest shield volcano on Earth with a diameter of more than 112 kilometers (70 miles). The volcano forms a significant part of the island of Hawaii.

The lava that creates shield volcanoes is fluid and flows easily. The spreading lava creates the shield shape. Shield volcanoes are built by many layers over time and the layers are usually of very similar composition. The low viscosity also means that shield eruptions are non-explosive. 

Cinder Cones

Cinder cones are the most common type of volcano. A cinder cone has a cone shape, but is much smaller than a composite volcano. Cinder cones rarely reach 300 meters in height but they have steep sides. Cinder cones grow rapidly, usually from a single eruption cycle (Figure below). Cinder cones are composed of small fragments of rock, such as pumice, piled on top of one another. The rock shoots up in the air and doesn’t fall far from the vent. The exact composition of a cinder cone depends on the composition of the lava ejected from the volcano. Cinder cones usually have a crater at the summit.

In 1943, a Mexican farmer first witnessed a cinder cone erupting in his field. In a year, Paricut

Cinder cones are often found near larger volcanoes (Figure below).

Composite Volcanoes

Composite volcanoes are made of felsic to intermediate rock. The viscosity of the lava means that eruptions at these volcanoes are often explosive (Figure below).

Mt. Fuji, the highest mountain in Japan, is a dormant composite volcano.

The viscous lava cannot travel far down the sides of the volcano before it solidifies, which creates the steep slopes of a composite volcano. Viscosity also causes some eruptions to explode as ash and small rocks. The volcano is constructed layer by layer, as ash and lava solidify, one upon the other (Figure below). The result is the classic cone shape of composite volcanoes.

A cross section of a composite volcano reveals alternating layers of rock and ash: (1) magma chamber, (2) bedrock, (3) pipe, (4) ash layers, (5) lava layers, (6) lava flow, (7) vent, (8) lava, (9) ash cloud. Frequently there is a large crater at the top from the last eruption.